Efficient Aggregate Licenses Validation in DRM

Amit Sachan!, Sabu Emmanuel', and Mohan S. Kankanhalli?

! School of Computer Engineering, Nanyang Technological University, Singapore
2 School of Computing, National University of Singapore, Singapore
amit0009@ntu.edu.sg, asemmanuel@ntu.edu.sg, mohan@comp.nus.edu.sg

Abstract. DRM systems involve multiple parties such as owner, distrib-
utors and consumers. The owner issues redistribution licenses to its dis-
tributors. Distributors in turn using their received redistribution licenses
can issue new redistribution licenses to other distributors and usage li-
censes to consumers. For rights violation detection, all newly generated
licenses must be validated against the redistribution license used to gen-
erate them. The validation becomes complex when there exist multiple
redistribution licenses for a media. In such cases, it requires evaluation of
an exponential number of validation equations with up to an exponential
number of summation terms. To overcome this, we propose a prefix tree
based method to do the validation efficiently. Experimental results show
that our proposed method can reduce the validation time significantly.

1 Introduction

Digital rights management(DRM)systems generally [4][5] involve multiple par-
ties such as owner, distributors and consumers. The owner gives the rights for
redistribution of contents to distributors by issuing redistribution license. The
distributors in turn use their received redistribution license to generate and issue
new different types of redistribution licenses to their sub-distributors and usage
licenses to consumers. A redistribution license allows a distributor to redistribute
the content as per the permissions and constraints [6] specified in it. Thus, as
part of the rights violation detection, it is necessary to validate these newly gen-
erated licenses against the received redistribution licenses with distributor. A
validation authority does the validation of all the newly generated licenses.
Both redistribution(Lp) and usage licenses(Ly) for a content K are of the
form: {K; P; I, I, ..., In;; A}, where P represents permissions (e.g. play, copy,
etc. [5]), I; represents i*" (1< i < M) instance based constraint and A represents
aggregate constraint. Instance based constraints in redistribution licenses are in
the form of ranges such as region allowed for distribution, etc. Instance based
constraints in usage licenses such as expiry date, region allowed etc. may be in
the form of a single value or range[5]. The range/value of an instance based
constraint in the further generated redistribution and usage licenses using a
redistribution license must be within the respective instance based constraint
range in the redistribution license [5]. Aggregate constraint decides the number
of counts that can be distributed or consumed using a redistribution or usage

license respectively. The sum of counts in all the licenses generated using a
redistribution license must not exceed the aggregate constraint counts(A) in it.

For business flexibility, distributors may need to acquire multiple redistribu-
tion licenses for the same content[5]. In this case, if all instance based constraints’
ranges/values in an issued license are within the respective constraint range in
at least one redistribution license then the issued license is said to be instance
based validated[5]. The problem of aggregate validation becomes harder in case
a license can be instance based validated using more than one redistribution
licenses(say a set S). This is because the validation authority needs to select
a redistribution license from the set S for aggregate validation. Selecting a re-
distribution license randomly may cause potential loss to the distributors as
shown in Sec. 2. Thus, we propose a better aggregate validation approach using
validation equations in Sec. 2. But, the approach requires validation using ex-
ponential number of validation equations, containing up to exponential number
of summation terms. This necessitates an efficient validation mechanism. So,
we propose an efficient aggregate validation method using the prefix tree based
structure[1][2][3]. The experiments show that our approach reduces the valida-
tion time and memory requirement significantly. To the best of our knowledge,
the work presented in this paper is the first for the efficient aggregate licenses
validation in DRM.

Rest of this paper is organized as follows. Section 2 discusses problem defi-
nition. Section 3 describes our proposed validation method. Section 4 presents
the performance analysis. Finally, Section 5 concludes the paper.

2 Problem Definition

In case of multiple licenses, a newly generated license can be instance based
validated using more than one redistribution license. For aggregate validation,
selecting one redistribution license randomly out of multiple redistribution li-
censes may cause potential loss to the distributors as illustrated in example 1.

Example 1. Consider three redistribution licenses acquired by a distrib-
utor to distribute the play permissions according to two instance based con-
straints(validity period T, and region allowed R) and aggregate constraint A.
L;D = {K;Play;]é—) : T'=1[10/03/09,20/03/09], R = [X, Y];QA}D = 2000}

Lap = {K;Play;lg) :T'=[15/03/09,25/03/09], R = [X]; A}, = 1000}
L3 = {K;Play; I}, : T = [15/03/09,30/03/09], R = [Y]; A% = 3000}

Now, the distributor generates the usage license L,lj = {K;Play;[llj T =
[15/03/09,19/03/09], R = [X]; A}, = 800}. L{; can be instance based validated
using L}, and L%[5]. Let the validation authority randomly picks L% for aggre-
gate validation then remaining counts in L% will be 200(i.e. 1000-800). Next, let
the distributor generates L, = {K; Play; I : T = [21/03/09,24/03/09], R =
[X]; A7, = 400}. L? can only be instance based validated using L%. The vali-
dation authority will now consider L, as invalid as L% now cannot be used to
generate more than remaining 200 counts. In this case, a better solution would
be to validate L}; using L},, and L? using L%. This will result in both L}, and

L% as valid licenses. Thus, the challenge is to do the aggregate validation such
that the distributors can use their redistribution licenses in an intelligent way.
We present a method to do the aggregate validation using validation equations.

A Method for Aggregate Validation: Let a distributor has N received
redistribution licenses for a content and the set of redistribution licenses be
represented as SN = [LL, L2, ..., LY]. Let SB"[S] denotes the r'" subset of the
set S of redistribution licenses. Thus if a set S contains k received redistribution
licenses then r < 2¥ — 1. An issued license is said to belong to a set S if it can
be instance based validated using all licenses in the set. E.g. L%, in example 1
belongs to the set [LL,, L%)].

Let C[S] denotes the sum of permission counts in all previously issued li-
censes that belongs to the set S of redistribution licenses. Let E*[S] be the i*?
redistribution license in the set S and A(x) be the aggregate count in the re-
ceived redistribution license x. For deriving the first equation, we use the fact
that the aggregate of the permission counts in all previously issued licenses must
not exceed the sum of the allowed permission counts in all the redistribution li-
censes with the distributor. Further, each valid issued license belongs to only
one set of redistribution licenses out of the total 2V — 1 possible sets(due to N
redistribution licenses). Therefore, in equation form we can write it as:

oN _1 N
> osBrsN) < Y AESN) (1)
r=1 =1

The LHS of equation 1 represents the sum of counts in the issued licenses
that belongs to the set formed by any possible combination of all N licenses(each
possible combination can be represented by a subset of the set SV). The RHS
denotes the summation of maximum allowed permission counts in all the redis-
tribution licenses with the distributor(as S is the set of all N licenses).

Although equation 1 can limit the counts issued in total using all the redis-
tribution licenses but it cannot prevent the violation of individual licenses or set
of licenses, which are proper subset of the set SV, as shown in example 2 below.

Exzample 2. Consider the redistribution licenses in example 1. The above
inequality ensures only the sum of all the play counts in the licenses issued must
be less than 6000 i.e. Cpiay [Lb] + Cpiay [LQD] + Cpiay [L?b] + Cpiay [Lb, L2D] +
Cpiay[LY, L]+ Cpiay [L%, L]+ Cpiay LY, L%, L] < 6000. But, it may not be
able to prevent the violation due to issuing of excess counts for other combination
of licenses. Equation 1 can be satisfied even if aggregate of the counts generated
for play permission using only Lhbecomes more than 2000 i.e. Cpjqy[L}] > 2000,
or using only L} and L%, becomes more than 5000 i.e. Cpjay[L1] + Cpiay[LD)] +
Cpiay|L}, L] > 5000 , but both these conditions are invalid. Thus, if there are
N redistribution licenses then violation can happen in 2% — 2 ways(all proper
subsets of S™). So, we require an inequality for each subset of S™V. For r*? subset
of set SY, SB"[SY], the validation equation is given as:

2™Mm—1 m

> CISBSBSV)) < Y AESBTS™])) (2)

=1 i=1

where, m = |SB"[S™]| is the cardinality of the set SB"[SV]. Equation 2 can be
interpreted similar to equation 1 by replacing S™v by SB"[S]. These inequalities
ensure that in case of violation at least one inequality will not be satisfied.
Requirement of Efficient Aggregate Validation: If a newly generated
license can be instance based validated using & number of redistribution licenses
then the set formed due to k licenses will be present in 2V — 2(V=F) yalidation
equations. Validation using such a large number of validation equations every
time a new license is issued is computationally intensive. So, instead of doing
validation online, we collect the logs of the sets of redistribution licenses(which
issued licenses belong) and permission counts in issued licenses. We refer each
entry corresponding to an issued license as a record. During the offline aggre-
gate validation firstly different set counts can be aggregated and secondly the
aggregated set counts can be applied to the validation equations. If M number
of records are present, the time complexities for the first and second step would
be O(M %2V) and O(3%) respectively. The time complexities for both set counts
aggregation and validation may be quite high for practical purposes. Thus, an
efficient method is required to reduce the total validation time required.

3 Proposed Efficient Aggregate Validation Method

In this section, we present validation tree, a prefix tree based structure to do the
validation of validation equations(equations 1 and 2) efficiently. The proposed
structure and validation algorithm is based on the observation that validation
equation for a set S aggregates the set counts of all the sets that are subset of the
set S. The structure can compactly represent the log records for offline validation
and use properties of prefix tree structure to do the validation efficiently.
Generation of Validation Tree: Initially, a root node is created. The tree
is then expanded using the log records. Each node stores the following fields:
name of a redistribution license(L), a count value(C), and links to the child
nodes. The count value C' determines the count associated with the set formed
by the redistribution license in the node and all its prefix nodes(nodes in the
path from the root node to current node). Redistribution licenses are indexed in
the order they were acquired by distributor i.e. if L, is acquired before L’B then
Jj < k and a redistribution license can act as a prefix only to the redistribution
licenses having index greater than the index of redistribution license, as shown
in Fig. 1. Child nodes of a node are ordered in increasing order of their indexes.
Records Insertion: Let the set of redistribution licenses in the record that
needs to be inserted be given by:R=[r, R']and the permission count value be
given by count, where, r is the first redistribution license and R’ is the set of
remaining redistribution licenses. Initially root node is allocated to T'. Algorithm
Insert(T, R, count) is used to insert the records in the validation tree. Fig. 1
shows the validation tree designed based on the Alg. 1 for the records in Fig. 2.
Validation using Validation Tree: To do the validation efficiently, we use
the fact that if a set S is not a subset of another set .S then any superset So of
S1 also cannot be a subset of the set S. Thus, in a prefix tree based structure, if

Algorithm 1 Insert(T, R=[r, R'], count)

1. If T has a child T such that T7’.L=r then no action is taken.
2. Else add a node T such that T’.L=r and T’.C=0 as the child node of T.
3. If R’=null set then 7".C= T’.C+count. Else, call Insert(T’, R’, count).

Fig. 2. Table of log records

@ @ @ Serial Number|Set of redistribution licenses|Count

() I 23 g

2 LD, L) 4

@ @ @ @ 3 L%, LT, LY)] 14
4 Ly, L) 13

@ 5 [LD, LD] 9

6 [LD] 7

Fig. 1. Generation of validation tree 7 [Lh, Lp] 12

the set of redistribution licenses formed by the redistribution license at a node
N7 and all its prefix nodes is not a subset of a set .S then any other node having
the node Nj as a prefix node cannot be a subset of the set S. Thus, we need
not to travel the child nodes of the node N;. Another fact we use is that a set
containing n licenses cannot be a subset of a set containing less than n licenses.

For N redistribution licenses, we can map each set of redistribution licenses
corresponding to a validation equation into an N bits bit-vector. The bits from
LSB to MSB correspond to a particular license with index from lower to higher.
If a redistribution license is present in a set then the bit corresponding to it is 1
else it is 0. E.g. If N=10 then the bit-vector for the set [L},, L%, LY, L}9] will
be 1100000101. So, if we consider bit-vectors in integer format then all possible
sets can be represented using the values from 1 to 2V — 1.

Algorithm 2 Validation(T) Algorithm 3 VaLHS(T,B,licNum)
Temporary Variables: A,=0, C\,=0 Subroutine: Process(T,B,licNum) {
for i=1 to 2V — 1 do while (licNum > 0) do
licNumber=0. foreach child of T do
for j=1 to N do Let the current child be T”.
if (1<< (j—1) AND i) # 0 Temporary variables: ¢ and j.
<<: left shift operator i=index of license in node T”
then) j=1<< (i — 1).
Ay=A,+ A(j). if (B AND j # 0) then
licNumber=licNumber+1; Co=C,+T'.C.

licNum=licNum-1.
if (licNum > 1) then
| Call Process(T’, B, licNum).

Call C,=VaLHS(T, i, licNum).
if ¢, < A, then

| Print(Valid Equation).
else -
| Print(Invalid Equation). }_Rcturn(Cv).

The wvalidation tree is used to compute the LHS of the equations 1 and 2.
RHS(let A) is calculated directly using redistribution licenses E.g. the RHS(A)
for the set [L},L3,, LY, LY] is given by: A=A(LL)+A(L%)+A(LY)+A(LY). Let
T represents the root node initially, and B represents the bit-vector for the set

of redistribution licenses for validation equation. The algorithm Validation(T')
evokes the validation process for all possible validation equations. First, it calcu-
lates the RHS of each validation equation. Second, it calls VaLHS (T, B,licNum)to
calculate the LHS. Finally, it compares the RHS and LHS to validate the equa-
tion. The algorithm VaLHS(T,B,licNum) traverse the wvalidation tree for the
set of redistribution license determined by the bit-vector B. licNum is the num-
ber of redistribution licenses in the set corresponding to the current validation
equation. For illustration, consider the validation using validation equation for
the set [L},L%,L%)] for validation tree in Fig. 1. B and licNum for this set will
be 01011 and 3 respectively. Let C, denotes the LHS of the current validation
equation for the set [L},, L2, L})], it is initialized to 0 for every validation equa-
tion. The algorithm traverses the nodes root, root— L},, root— L%,, root— L7,
and root— L}, — L%. The final value of C, for this case is 19.

4 Performance Analysis

We performed experiments on on Intel(R) core(2) 2.40 GHZ CPU with 2 GB
RAM. To perform the experiments, first we created a number of redistribution
licenses and issued licenses. The set of redistribution licenses to which each issued
license can be instance based validated along with the permission counts is saved
in the log records. For experiments, each redistribution license is assumed to
contain aggregate permission counts in between 5000 and 15000. Each issued
license is assumed to contain permission counts in between 10 and 30.

We evaluate our proposal against the direct approach and a modified ap-
proach. In the direct approach, we scan the log records to find the subsets for
the set corresponding to each validation equation and then aggregate their set
counts. Whereas, in modified approach, we preprocess the log records to first
aggregate the set counts for the sets containing the same redistribution licenses.
Since, in practice many issued licenses may belong to the same set of redistribu-
tion licenses therefore scanning the modified log records would take lesser time.
Table 1 summarizes the validation time performance. The experiments show that
our proposed algorithm enhances the performance at least by 500 times and 10
times as compared to the direct and modified approach respectively. The large
performance enhancement as compared to the direct method is mainly due the
compact data representation in validation tree. However, in modified approach,
the main reason for performance enhancement is the efficiency of our proposed
subset search algorithm in the validation tree. Thus, it can be concluded that the
validation tree gains efficiency both by compactly representing the log records
and efficiently searching the subsets. Fig. 3 compares the performance in terms
of memory requirement. The memory requirements for our approach is much
less as the records can be stored in a much compact form in the validation tree.

5 Conclusion

Rights violation detection is an important security issue in DRM systems. In this
paper, we presented a violation detection mechanism for distributors using the

Table 1. Comparison of validation time required(in milliseconds)

n 1 2 3 4 5 6 7 8 9 10
Direct .02 .05 .23 .80 2.12 | 5.80 15 39.33 93 188
Modified | 0 |.00031 |.00094 | .0034 | .0122 | .04 11 .30 74 1.64
Proposed| 0 [.00016 [.00031 [.0011 | .0035 | .01 .03 .06 14 .33
n 11 12 13 14 15 16 17 18 19 20
Direct 422 890 | 1953 | 4047 | 9078 | 21188 | 47906 | 108281 | 239953 | 524641
Modified | 3.828 | 8.8 21.6 | 435 95 203 438 937 2063 4485
Proposed| .687 | 1.44 | 3.07 6.4 17 31 47 110 250 500
n 21 22 23 24 25 26 27 28 29 30
Direct [1.2¥10°%[2.6%10°[5.4%10°[1.2¥107[2.6%¥10" [5.6%¥10" [1.3*¥10%[2.9%¥10% [6.1¥10]

Modified | 9640 | 20922 | 43844 | 95640 [195953 (399281840109 [1761812]3810765]7648375]
Proposed| 1063 | 2219 | 4515 | 9563 | 19406 | 39422 | 79531 | 162938 [328672 | 669360]

N
o

E - - - Our proposed Approach
I= * Modified Approach)
"= 201 —— Direct Approach/100 /’/’
S A
£ 150
¥
g 10 A
= A
> e
g 5r e E
o *
= - I S, -
0 = 3 - L
0 5 25 30

10 15 20
Number of redistribution licenses (n)

Fig. 3. Comparison of memory requirement

aggregate validation of licenses. However, large number of validation equations
make the task difficult. Thus, we proposed ’validation tree’; a prefix tree based
data structure to do the validation efficiently. The experiments show that valida-
tion tree performs better than the direct and a modified approach of validation
in terms of validation time and memory requirements.

Acknowledgement: This work is supported by A*STAR Singapore, under project No:
0721010022, title:’Digital Rights Violation Detection for Digital Asset Management’.

References

1. Eavis, T., Zheng, X.: Multi-level frequent pattern mining. In: Database Systems
for Advanced Applications(DASFAA), pp. 369-383. (2009).

2. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees.
Knowledge and Data Engineering, IEEE Transactions on, 17(10):1347-1362, (2005).

3. Han, J., Pei, J., Yin, Y., Mao, R.: Mining frequent patterns without candidate gen-
eration: A frequent-pattern tree approach. Data Mining and Knowledge Discovery,
8(1):53-87, (2004)

4. Hwang, S.O., Yoon, K.S., Jun, K.P., Lee, K.H.: Modeling and implementation of
digital rights. The Journal of Systems and Software, 73(3):533-549, (2004)

5. Sachan, A., Emmanuel, S., Kankanhalli, M.S.: Efficient license validation in MPML
DRM architecture, In: proceedings of the 9th ACM workshop on digital rights
management, Chicago, pp. 73-82, (2009)

6. Safavi-Naini, R., Sheppard, N.P., Uehara, T.: Import/export in digital rights man-
agement. In: proceedings of the 4th ACM workshop on digital rights management,
pp. 99-110, (2004)

